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Abstract: It has been suggested that weak interactions at high energies, Gs > 1 (G is the Fermi 
coupling constant, x/~ is the c.m.s, energy), become strong so that the partial waves can 
reach their unitary limit. This hypothesis is the opposite one to the assumption that there 
exists some special mechanism (e.g. the intermediate W-meson) which cuts off the increase 
of the partial waves at comparatively small energies s ~ G -1 , in which case the interaction 
could remain weak up to very high energies. Elastic lepton scattering and some other leptonie 
reactions (e + + e -  ~ t~ + + ~ - )  are considered by means of complex angular momentum 
theory provided Gs ~, 1. The main difference with the usual strong interactions consists 
in the possibility of the exchange of massless particles in the cross t-channel. This results 
(i) in the appearance of the singularity at t = 0 in Regge trajectories and residues and (ii) 
in the condensation of the Regge poles at t ~ 0 in the/'-plane along the imaginary axis 
Re/= 0. For inelastic processes such as e + + e -  ~ tz + + t 7  the latter singularities could be 
the leadmg ones and the elastic cross section has then a specific oscillating behaviour at 
small momentum transfer. In the ease of elastic lepton scattering due to s-channel unitarity 
there must exist some additional singularity in the right-half/'-plane at t = 0. The total 
leptonic cross section satisfies therefore the inequality Oto t > const • s -1 when s ~  **. 

1. Introduction 

I t  is wel l -known that  the phenomenolog ica l  descript ion o f  weak  in terac t ions  at 

small energies by per turba t ion  theory  with  the four - fe rmion Lagrangian should be 

changed at energies s ~ G - I ,  where G is the Fe rmi  coupling constant .  A t  Gs ~ 1 

the partial S- and P-waves as calculated by per turba t ion  theory  saturate their  uni tary 

l imit  and the appl icat ion o f  the per turba t ion  theory  at higher energies wou ld  violate 

uni tar i ty .  Apparen t ly  there are two possibilities for  "un i t a r i z a t i on"  o f  the theory.  

One  o f  them is that  the appl icat ion o f  the local  four - fe rmion Lagrangian becomes  

invalid at some energy which  is essentially smaller  than the uni tary  l imit .  I f  at this 

energy the partial waves s top growing (or  there remains only  the logar i thmic  in- 
crease), the energies s ~ G -  1 are i rrelevant  to the p rob lem and the partial  waves 

can remain small up  to very high energies. The  typical  s i tuat ion o f  that  k ind arises 

i f  one tries to  decribe the weak in te rac t ion  together  wi th  the e lec t romagne t ic  one 
by the in t roduc t ion  o f  a tr iplet  o f  vec tor  mesons.  The mass o f  the in te rmedia te  
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charged meson is then the characteristic energy at which the increase of  the partial 
waves is cut off  and up to logarithmicly high energies they can be of  order of  
~< a = 1/137. Note, that even here, because of  the logarithmic increases, the inter- 
action becomes eventually strong, but only at academic energies ct In s/M 2 ~" 1 (or 
even ct 2 In s/M 2 ~ 1). It  is obvious that in such an approach one must construct 
the renormalizable theory. It is just renormalizability that provides the absence of  
the power increase of  partial waves. Recently essential progress has been achieved in 
the construction of  the renormalizable theory of  weak interactions [1].However, it 
seems to us that in some way this theory is not an economical one. The point is that 
in any theory of  such a type the introduction of  a new mass is required (e.g., the 
mass of  the intermediate boson) whereas at energy s "~ G -  1 the cut off  must take 
place simply because o f  unitarity. Therefore, though it is impossible to exclude the 
version with the cut off at some energy smaller than at the unitary limit, we shall 
discuss in what follows the other possibility, namely, the unitarization o f  the theory 
at s ~ G -  1 when the partial waves are already of  order of  unity. 

The appearance of  the power increase in weak interactions at small energies is in 
fact of  a purely kinematical character. Indeed, the amplitude of  the lepton-lepton 
scattering is proportional to Gs due to the necessity of  vanishing of  the lepton-anti- 
lepton scattering amplitude in the backward direction. This, in turn, is necessary 
because of  helicity conservation. The situation with weak interactions may be con- 
sidered then as follows. The weak interactions are, generally speaking, strong, i.e. 
the partial waves can reach their unitary limit. At low energies s < G -  l ,  however, 
they are small because of  the kinematical requirement of  vanishing of  the amplitude 
at s = 0. The situation could be similar to that for the strong interactions for ~r-lr 
scattering in the soft-pion limit. I f  the PCAC hypothesis is right then the rr-Tr scattering 
amplitude must be proportional at small energies to some combination o f  s, t and u 
(when m~r = 0) and, hence, must increase with the increase of  the invariants. How- 
ever, at energies of, say, 0.5 GeV this increase stops and we have the usual intricate 
picture of  strong interactions. The main difference from the weak interactions con- 
sists, of  course, in the fact that in the latter case the "low-energy domain" survives up 

1 
to energies of  order of  G - ~ ,  i.e. up to 3 0 0 - 1 0 0 0  GeV. (A more accurate estimation 
of  the boundary, where weak interactions should be considered as strong, is made 
by estimation of  the energy at which an appropriate partial wave saturates its unitary 
limit [2]. We shall discuss this in future in more detail.) 

Whereas for theories where the interaction remains weak for practically all energies 
the mare problem is the choice of  the Hamiltonian, for a theory in which the inter- 
action becomes strong at Gs > 1, the usual strong-interaction methods are rather to 
be applied. At high energies, which means here Gs >> 1, it is reasonable to try to use 
the complex angular momentum theory. This is what is done in the present paper. 
The distinguishing feature o f  the case is the possibility of  the exchange o f  mass- 
less particles (neutrino and also electrons and/~-mesons if t ~ m 2, me 2) in the cross 
t-channel. In the previous paper by the authors [3] some characteristic phenomena 
were considered which arise in the usual strong interaction theory in the limit o f  
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massless pion. It  appears that since the thresholds for production of  particles 
coincide with the boundary o f  the physical region, t = 0, the Regge trajectories 
and residuer have singularity at t = 0 and also. there is a condensation of  the Regge 
poles along the imaginary axis Re]" = 0 in complex j-plane when t -+ 0. Both of  these 
phenomena are also present in the discussed theory of  weak interactions. 

In the second section of  the paper the processes e + + e -  ~ / a  + + # -  are discussed 
which differ from elastic scattering by the "exotic" character of  the quantum num- 
bers in the t-channel. It is shown how the condensation o f  the poles mentioned 
above appears and the contribution o f  this condensation to the amplitude is calcu- 
lated explicitly. I f  there exist some other singularities which are located to the right 
o f  the line Rej = 0 the calculated asymptotic behaviour represents a lower boundary 
for the amplitude of  the process e + + e -  --> tt + + /a - .  

In the following section we find the contribution to the amplitudes o f  the same 
process (e + + e -  -->/x + + /a - ) ,  arising from the Regge-cut connected with the regge- 
zation of  two leptons in the t-channel intermediate state. The contribution of  the 
cut is asymptotically o f  the same order of  magnitude as is the contribution of  the 
above-mentioned condensation. Because the considered particles are massless, the 
character of  the Regge branch point turns out to be rather strong. This leads to the 
unusual situation when the contribution to the amplitude contains no free param- 
eters except the mass units (of  order o f  ~ G-½) in which s and t are measured, these 
units being present only logarithmically. 

In sect. 4 o f  the paper elastic lepton scattering is considered. The main difference 
from the process e ÷ + e -  -->/1 ÷ + /a -  is that there must exist some singularity which 
is located to the right o f  the line Re /=  0. This provides the positivity o f  imaginary 
parts of  the partial waves in the direct s-channel. In the frame of  our approach it 
can be seen that at t = 0 the position o f  this singularity a (0) < 1. The arguments are 
much the same as those presented recently in ref. [4]. Thus, for the total lepton- 
lepton cross section we get 

const • s -  1 ( Otot < const - s e , 

where e is an arbitrary small number. Whereas the upper limit has been already dis- 
cussed (see for example ref. [5]) it seems to us that the lower boundary is obtained 
for the first time. 

In the conclusion to the paper we discuss the experimental possibilities of  the 
verification o f  the theory. It is estimated that in order to have the sufficiently high 
energies one should have colliding lepton beams with energy (2 - 2.5) X 103GeV of  
each beam. It is necessary then to measure the differential cross section 
do/dI2 >~ 1 pb/sr for the process e + + e -  ->/a + + /a -  (or, maybe, several orders larger) 
and the total lepton-lepton cross section which magnitude might be of  an order of  
,-~ 5 nb. The last figure is obtained if one assumes that there exists the "Pomeranchuk 
trajectory" passing th rough /=  1 at t = 0. In this latter case ato t ~ G, since G is the 
only dimensional constant which is present in the theory. 
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2. e + + e -  -*st+ +st -  production at high energies 

We shall start the discussion by consideration of  the process e + + e -  -* st+ + st- 
(or the inverse one). In comparison with elastic lepton-lepton (or lepton-antilepton) 
scattering there are some simplifications since the quantum numbers o f  the t-channel 
coincide here with the quantum numbers of  the system ve~- r (or k-e vr). Therefore, 
this channel can be considered as an "exot ic"  one (since it has electron and muonic 
charges not equal to zero). At the same time the reaction e + + e -  -* st+ + st- is easily 
detected in colliding beams experiments. 

There is a set of  possible intermediate states in the t-channel unitarity condition: 
Veg r ,  e-st  + and many-particle states. Let us consider Gs >> 1 and Gltl'~ 1. If, in spite 
of  the condition Gltl ~ 1, Itl >> (mr  + me)2, we can put m r = m e = 0. By this we 
actually suppose that all the amplitudes of  the leptonic proceses do not  go to infinity 
when m r -* 0, m e -* 0, so that in the massless limit there exists some reasonable 
theory in which the long-range forces are connected with the exchange of  e and st 
pairs as well as with neutrino pairs. The analogous question has been discussed tn 
detail for the case o f  the usual strong interactions in connection with the vanishing 
pion mass limit [3]. 

From the dimension reasons it is obvious that at m u = m e = 0 the many-particle 
contributions to the unitarity condition contain some extra powers of  Gt in com- 
parison with the two-particle contribution. The extra t powers are just the phase 
volume while G comes in because at m r = m e = 0 it appears to be the only dimen- 
sion constant. In the physical region of  the t-channel it is then clear that provided 
Gt < 1 the many-particle contributions are small in comparison with the two-particle 
contribution. However, the case Gs >> 1, Gt  < 1 requires the analytical continuation 
of  the t-channel unitarity condition in s. I t  is not  then obvious that many-particle 
contributions in t-channel unitarity are altogether negligible. Moreover, as we know 
by experience concerning the investigation of  strong interactions, the many-particle 
states in the t-channel can lead to the very important phenomenon generation of  
the Regge cuts in the complex angular momentum plane. Nevertheless the investi- 
gation of  the asymptotic behaviour of  the amplitudes with "pure"  Regge poles has 
proved to be very useful. Keeping this in mind we shall attempt to consider weak 
processes at high energies using mainly the two-particle unitarity in the t-channel 
but taking into account possible appearance of  Regge cuts in the complex angular 
momentum plane. 

As far as hadrons in the t-channel intermediate states are concerned, we can note 
that in the case of  the e + + e -  -* st+ + st- reaction hadron pairs can only be pro- 
duced together with lepton pairs Veff r or e-s t  +. Therefore we neglect their con- 
tribution for the same reasons as with the contribution of  many-particle "pure" 
leptonic states. For elastic lepton scattering a single hadron pair can appear in the 
t-channel. We shall discuss this possibility in the next sections. 

Since we are going to investigate the e + + e -  -* st+ + st- process by means of  the 
t-channel unitarity condition in which ve~- r and e-st  + intermediate states are taken 
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into account, we must consider in the s-channel three coupled amplitudes (fig. 1): 
Ve + v-e --> v. + ~- (the amplitude F(s, t)), v e + e + + #+ (the amplitude G(s, t)) 
and e-  + e +~-->/a -u +/a + (the amplitude H(s, t)). The t-~hannel processes will be 
ve + gu --> Ve + gu' Ve + ~ -> e-  + #+ and e-  + g+ --> e-  + #+ respectively. 

Let us write down explicitely some general formulae useful for the future. Since 
the helicities of the initial and the final states in the t-channel are equal to unity, 
the partial waves with integer values of the momentum] = n are defined by 

+1 
fn(t)  = f ½ dzF(s, t)dt~l (z),  (1) 

-1 

where s = --~ t(1 - z) and d~l(Z ) are the usual d-functions (see for example ref. [6]). 
Analogously to (1) the partial waves gn(t) and hn(t ) can be defined in terms of the 
amplitudes G(s, t) and H(s, t). 

In order to continue fn(t) to complex values of the angular momentum ] we must 
assume, as usual, the validity of the dispersion relations in the s-variable (the suf- 
ficient number of substractions, though not written down, are implied): 

1 f Fl (S" t )ds '  1 f F2(u','t)du' 
- s + t + u = O .  (2) F(s, t) --~ s' - s +-~ u - u ' 

0 0 

Substituting (2) into (1) and using the equations 

f l  1 d~l(Z) dz n , +1 d~l(Z) dz ~1-1  (z') 
_ z - - z  2 = Q l l ( Z ) ' _ ~  If z '+z  2 =-Q~l(-z ' )=(-1)n n ( n + l )  ,(3) 

we get for the partial waves with positive and negative signatures 

1 f d zF2(Z l t )~ l_ l (Z  ) (4) 6~(t) = 1  f l  dZFl(Z't) Q]ll(Z)+-I ](]+ 1) 1 

This equation gives the analytical continuation of the partial waves which decrease 
in the right half of the ]-plane. 

The amplitude F(s, t) can be obtained now by Sommerfield-Watson representation: 

F(s, t) = F~(s, t) + e -  (s, t), 

** 2j+ 1 
F±(s , t )=¼i  d] fi---~/" 6"-+ (t) [ - a~_ l  (-z)+d/ll(Z)l ,  

C-l~o 

(5) 

which gives at, s ~ o% 
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C+io* 

F - ( s , t ) = ~ t  f d/ - - LVs .J s i (6) 
c-i** smnl[I~j '+2)12 71 [].]~ " 

At last, the expression for the absortive part F{  (s, t) is 

3 (,) F ;  (s, t) = - ]  i d] (2] + 1)](j + 1) r (2 /+  1) 1. 
c - i -  [ r ( :+  2)] 2 f/f(t) (7) 

The equations analogous to (1 ) - (7 )  can also be written for the amplitudes G(s, t) 
and H(s, t) and the partial amplitudes g/(t) and hl(t ). 

The unitarity conditions for f/, g/and h/have the form (see fig. 1): 
1 II . _ , , ,  

(8) 
Here f]I(t)  -*  I1 * =I]*, g~ =g]* . . . .  are the values of the amplitudesfi(t),g/(t).., on 
the second sheet ot the t-plane. Eqs. (8) are correct separately for the amplitudes for 
positive and negative signature. Each amplitude ~,  f]I, gi, etc., should have, of course, 
the sign indicating signature, e.g. f/+II. We omit it for the sake of abbreviation. 

If VeV ~ ~ el~ symmetry holds on at high energies (masses are neglected) then, ob- 
viously, F(s, t) = H(s, t) and f/(t) = hi(t ). Thus, we obtain from (8): 

~ i (a f - -a I ) )=a ,  al ~. , ~ i ( b ] - ¢ ) = b , J J l  ~, , 
(9) 

ai =f/+ g/,  bi = f / -  gi,  h i =f/ ,  
so that the unitarity conditions are diagonalized for f / -  g]. Since f / =  h~ = ½ (a] + b/) 
and g] = ½(a] - b/) and taking into acount the fact that there exist separately a/~and 
b~=with positive and negative signatures, we can represent the amplitudes F, G and H 
in the form 

F - - (s, t) =He-e._+ - + (s, 0 -~- 1 [A+(s, t )+A-(s,  t)+B+(s, t)+B-(s,t)], VeVe--*v~vtz 

= I [A+ts t )+A-(s , t )_B+(s , t )  B- ( s , t ) ] .  (10) Gvee+-~vuz+(s,t) ~L ~, 

The amplitudes A ± and B -+ are expressed in terms of the partial waves a/and b/~ 
by eqs. (5) and (6). 

As is well known, at non-integer values of the momentum/the partial waves are 
real below the two-particle threshold only after the extraction of the factor t / (or  
(t - 4/a2)! if a mass/a 4= 0). 

Introducing oti(t) = a/(t)/t/we have for %'(0 

~7(a/1 _ OlH) = t/at, Ot]I " (11) 
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This equation is, of  course, valid for both signatures off as well as for the functions 
[37= bT/ff .  As usually eq. (11) can be easily solved by consideration of  the inverse 
amplitude 1/aj since 

(41"I:  
Thus we get (see ref. [3]) 

1 
eI'(t) ~ ( t )  + X/(t) ' (12) 

where A/(t)  is a function which has no singularity as t = 0 and 

1 
xj(t) - sin ~/ [ ( - t y -  ~. ( - t ) " ] .  (13) 

The first term in eq. (13) provides the validity of  the unitarity condition (11) for 
~ .  The ~n . . . .  terms can be understood as some substractions which can also be 
included in the regular function Aj(t). The meaning of  these terms is as follows. At 
j = n, where n is integer, ( - t ) /s inlr j= oo so that the amplitude c~ 1 would tend to zero 
if these substractive terms were absent. We do not  see any reasons for the vanishing 
oft~j at integer] = n. If, on the contrary, these terms are included, the equation 

2"-71 [Ot~ 1_ (Ot/II)-l] = _ / ]  

remains valid for integer j. One can also check the presence of  such terms by means 
of  some potential model using the results of  ref. [7]. We can note, at last, that the 
absence of  the substractions discussed changes very slightly the final results. 

Eq. (12) is the solution o f  the two-particle unitarity condition. Therefore the 
singularities of  tx] are the Regge poles corresponding to vanishing of  the denominator 
in (12). Expanding A/(t) near some poin t ]  = t~ 0 and t = 0 as A](t) = [] - tXo-c t  ] /b,  
we see that the trajectories o f  these poles have a singularity at t = 0 whose character 
depends on the values of  the intercept t~ 0. Eor tx 0 > 0 

or(t) =tx 0 - b ( - t ) % / s i n l r  eo + Ct, ~0 ~ n ,  
(14) 

o~(t) = n - b t n  l n ( - t )  + Ct, r~ 0 = n .  ff 
This threshold behaviour of  the trajectories had been previously discussed in ref. 

[8] and recently for the massless case in a paper of  the authors [3]. 
The denominator of  eq. (12) is a rapidly varying function of  t and]  at small t ~  0 

and j  -+ 0 because of  the singular character of  the function Xl(t ) in this region. This 
leads to the appearance of  an infinite number o f  poles which move to the point 
] = 0 as t -+ 0. The analogous threshold condensation of  the poles and its contribution 
to the asymptotics has been considered before in ref. [9] in the case of  non-vanishing 
masses. In this latter case the condensation removes to the point j = - ½  as t ~ 4/a 2. 
The most interesting feature of  the massless case is that the point t = 0 is now the 
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Fig. 1. Illustration for t-channel two particle unitarity condition. 
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physical one, and, besides, that the position of the condensation at/" = 0 provides 
larger asymptotics than that at/" = ~ (when/a g: 0). 

Since at present we consider the amplitudes with the "exot ic"  quantum numbers 
of  the t-channel, we assume that there are no Regge poles with positive intercept 
ot 0 > 0. I f  this hypothesis is incorrect then the asymptotic expressions for F, G and 
H, obtained below, should be understood as the lower bound for the amplitudes. 

Let us represent the function Aj(t)  near j = 0 and t = 0 as 

hi ( t )  = a ÷ b / ,  (15) 

where a and b are some constants. We neglect the term proportional to t since, as 
it will be seen below, the essential values o f j  will be of  order 

1 
/ ~  In ( - l / t )  ~ t  

as t ~ 0. We can consider the constants a and b as some dimensionless quantities if t 
is measured in the natural units G -  1, the coupling constant G being the only di- 
mensional constant in the theory. Then by the statement " t  is small" we mean actually 
Gt ~ 1, / >> t means ] >> Gt, and so on. 

We get f rom (12), (13) and (15) a t j  _~ 0 and t ~-- 0 

r = I n ( -  l / t )  > 0. (16) 
t~J = e -  rJ-- 1 + rtj [a + bj] ' 

The vanishing of  the denominator gives us the trajectories of  the poles: 

Jn(t ) _ 2ran 4~r2n27 ~ 7r2a 2 
r r 3 , 3 , = -  +Trb,  n = +  1 , + 2  . . . . .  
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The linear in ] term 0ra]) is excluded by redefinition of the units in which t is 
measured. In order of magnitude these units remain "" G-  1 : 7- = In( -  l/GO. 

Substituting (16) in (6), we obtain the asymptotics of the amplitudes with 
positive and negative signatures as the sums over the contributions of the poles (we 
would remind that aj differs from aj by the factor t/which cancels out with t - / in  
eq. (6)): 

[ 47r2n2 ~] 27rn~ 
A+(s,t)- 4rt2 ~ exp - 7"3 T+ nsin 

7"2 n= 1 7- 

+i4~r4 ~ e x p [  -4~r2n2 ] 
r 3 n=i 7-3 3'+~ n2 c°s'2rm~ 7" ' 

A -  (s,O = -  4rt6 ~ ex r 47r2_n 2 ~]n 3 sin 
• 7 -4 n= 1 PL- r3 3'- 2nn~7" 

.47r4n~__=l [ 47r2n2 1 2nn~ + t - -  exp 3'-~ n 2 cos - -  (17) 
7 -3 r3 7- 

The parameters "1'+ and 3'- for the positive and negative signatures are, of course, 
different. The amplitude of the process e-  + e + -~ l l-  +/2 +, H(s, t), is given now by 
formula (10) with B e (s, t) being determined by the same equations as (17) but with 
some other values of constants 3,-+. 

If 4rt2~3'-+/r 3 >> 1 the only term withn = 1 is essential in the sums in (17). Among 
the four functions A +, A- ,  B +, B-  one should keep then only that function which 
correspond to the smallest value of 3'. Thus, at 41r2~3"/r 3 >> 1 we have 

2~r4r 21r~-I C 41r23'~'1 
- - . c o s  sin 

The sign (-+ 1) in the second term must be chosen in correspondence to the sig- 
nature of the function remaining in the expression (10) for H(s, t) (i.e. the function 
which correspond to the smallest value of 3' in its t-channel partial wave expansion). 

If, on the contrary, 4n23'~/r 3 "< 1 then the large number of terms in eqs. (17) 
are essential (this is, of course, purely from theoretical point of view, since the 
numerical convergence of the sum is perfect). This limit will be of some special 
interest for us in the case of elastic scattering and will be considered in details below. 
Here we note only that in this region A-* functions do not vanish only in the neigh- 
bourhood of the integer values of ~/r = 1, 2 , . . .  The heights of the peaks are pro- 
portional to ~ 3'-3/2 while their widths are ~ 3'1/2. Therefore the presence of four 
terms in eq. (10) leads to the result that on the pattern consisting of the main peaks 
some additional broader peaks with smaller heights are superimposed. 
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3. The contribution of the Regge cuts to asymptotics 

It is well known that in relativistic theory, because of the presence of the third 
spectral function p (s, u), the discontinuities of the partial waves on the left-hand 
cut in the t-plane have the poles at integer negative values of the angular momentum 
[10]. Since in the present ease we consider in the intermediate state two particles 
with spin ~, there must exist a pole of the discontinuity of aj(t) at]  = 0 ("Azimov's 
displacement" [11]). One can easily see this by calculating the discontinuity of 
a/(t) = aj(t)/t / connected with the third spectral function. 

We have from (4) 

S 0/ Al.~ ~ ( t ) = l  ds + 1 1 du 
- ~ l P ( S , U ) ~ l ( Z  ) - -  p(s,u)Q]l_ (z) (19) - ~  ] ( /+  1) t/+l 1 ' 

0 

where in the first term z = 1 + 2sit while in the second - z  = 1 + 2u/t. At ] -~ 0 

,,. 1 
] \ z + l ] "  Q . - l ( Z ) " z  - 1 '  

hence 

Introducing u = - s - t as a variable of integration in the first integral, we see that 
the pole is absent in the positive signature whereas for negative signature the pole 
term is equal to 

Y __1 o(s, u). (21) 
0 

Note, that because of helicity structure of the theory p(s, u) ~ u at small u (as well 
as the whole amplitude) and so there is no divergency at u ~ 0. The absence of the 
pole in the positive signature amplitude is a manifestation of the general rule about 
the absence of the poles in the points of "right" signature. 

The existence of the pole in At._~ ]- leads, as is well-known, to two possibilities 
The first is that there is an essential singularity o f ~ -  a t / =  0 [10]. The second pos- 
sibility is that a t j  --} 0 the many-particle contribution in the unitarity condition can- 
eel out the pole of the second order, appearing in the right-hand side of the two-par- 
ticle unitarity condition (11). Then both sides have the pole of only the first order 
~ad unRarity is not violated. In this ease the moving cuts appear which are the result 
of the reggeization of particles in the intermediate state. Despite the reggeization of 
leptons seeming rather extravagant at the present time, it appears to us to be a 
natural possibility. Indeed, from the point of view, developing in this paper, in the 
region Gs > 1 weak interactions do not differ, in principle, from the strong interac- 
tions. In comparison to the strong interactions it is only the scale of masses which 
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g 

+ + ÷ 

e e e  

(a) 

+ ~(k 2) ~((+_q)2k + 

(b) 

Fig. 2. (a) Chain of diagrams corresponding to the partial wave of eq. (12) Co) Chain of reggeon 
diagrams corresponding to reggeization of particles in the intermediate state. 

change: the characteristic mass G -1/2 is much larger than the characteristic hadron 
masses. This reflects in the fact that after the reggeization the slopes of  lepton tra- 
jectories must  be in order of  magnitude * 

a ( t )  = 1/2 + a ' t ,  or' -~ G .  (22) 

Thus, the heavier particles of  the Regge occurence (22) must have masses of  order 
of  hundreds or even thousands GeV. 

Let us consider the contribution of  the two-reggeon cut in the negative-signature 
partial wave ot]. As it was mentioned above, this cut provides the validity of  the 
unitarity condition for  ot]-and we will not  describe the details of  this mechanism, be- 
cause the situation is completely the same as that  considered by Mandelstam [12]. 
The simple meaning of  eqs. (12) and (13) for otI is that they correspond to the sum- 
mat_ion of t -channel  loop diagrams drawn in fig. 2a. The function Xl( t  ) i s the  lepton 
loop, while A/(t)  = ~gl(t)] - 1  where g/(t) is the amplitude of  the transition £+l~ ~Q+~  

• We do not consider the (Gt) 1/= term in the trajectory, possible in the fermion case. Its presence 
does not influence much what follows. 
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shown in fig. 2. (We consider somewhat "conditioned" leptons arising after diagona- 
lization of the unitarity condition (8) as it was demonstrated by eq. (9)). The 
reggeization of the leptons preserves,the form (12) for a / s ince  it is now deter- 
mined by the set of the reggeon diagram of fig. 2b. The wavy lines represent the reg- 
geons. There is, of course, a question whether the vertex £ +.~ ~ 2 reggeons coincides 
with 2 reggeons -+ 2 reggeons vertex. However, as it will be seen below, after the 
extraction of some rapidly varying factors, we take a limit in which the reggeon trajec- 
tories a 1 = ol 2 = 1/2. In this limit both vertices are certainly the same, which proves 
the validity of the form (12). The difference with the previous case consists in the ex- 
plicit form of the function ×](t) which can now be calculated by means of reggeon 
diagram techniques [13]. 

It  is convenient to introduce the function 

=] (0  (23) 

which enters directly into the integral determining the asymptotic behaviour of 
Al(S, t) at small] (see eq. (7)): 

C+i*= 
A 1 (s, t) = - ~  i f d] ff] (t) s ] . (24) 

C-i.o 
As it was mentioned above the general form of ~] is 

1 
~] = A/(t) + ~jq) (25) 

where ~,](t) has no singularity at t = 0, and the function X](0 can be found by the 
rules formulated in ref. [ 13] for calculation of the reggeon loops. It  is convenient 
to start the consideration in the region of - t  = q2 > 0 and then to do the analiti- 
cal continuation to positive values of t. The expression for X] at small t and ] can be 
written as follows: 

d2k k"  (q - k )  p2U- a(k2)-a((q-  k)2)+ll 2 ) f C 
J ]  - o~k 2) - a((q - k)2)+l k2(q - k)  2 

(26) 

The equation (26) requires some clarification. The constant C is the normaliza- 
tion factor. The two-dimensional integration (d2k) and the denominator 
] - a(k  2) - a((q - k) 2) + 1 correspond to the usual rules of the reggeon diagram 
techniques [13]. The denominators 1/k 2 and 1/(q - k) 2 arise from the signature 
factors of  the reggeons 1/sin lr(a(k2) - 1/2) and 1/sin 7r(a((q - k)2 ) -  1/2) which 
tend to infinity at k 2 = 0 and (q - k) 2 = 0, In the region of positive t the contribution 
of these poles provides the cancelation of the pole at]  = 0 in two- and four-particle 
contributions in unitarity condition for ff~ (for more details see ref. [12]). The factor 
k" (q - k) is connected with the fermion character of the reggeons. At last, the fac- 
tor p2 [] - . . . ]  reflects the threshold behaviour of the amplitudes of reggeon's pro-,, 
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duction, p being the momentum of  the relative motion of reggeons. This latter fac- 
tor is usually neglected when one is interested only in the form o f ~ ]  in the im- 
mediate neighbourhood of  moving singularities arising from vanishing of denomina- 
t o r ]  - a (k  2) - a((q - k)2)-+ 1 = O. The appearance of  this factor can be traced follow- 
ing the results of  ref. [14]. 

For the case of  non-reggeized leptons, t~(k 2) = tz(q - k) 2) = 1/2 the integral 
(26) must give an expression for X/( t )  which agrees with formula (13) for )C/(t) for 
small/' and t, i.e. ~]  = 1/ltj2[(-t)] - 1] (X] = X//]). This will allow us to determine 
the numerical constant C. 

Indeed, using the value o f p  2 

p2 _ 1 [q4 _ 2q2(k2 + (q _ k)2) + [k 2 _ (q _ k)2] 2 l 
4q 2 

= k 2 (1 - cos20), cos 0 = q • k/Iql Ikl,  
(27) 

we can rewrite (26) in the case a(k 2) = ot((q - k) 2) = 1/2 and/' -~ 0 in the form: 

c fd2k g. ( q - k )  k2 ] (28) 
X J : ]  k2(q  _ k )  2 " 

At/ '  = 0 the logarithmic divergency of  the integral at small k 2 is cut of f  by the 
value o f q  2. Therefore for calculation of the singular part o f (28 )  the values 
k2 >> q2 are essential, so that we get: 

A2 ffd(k 2) _ rtC [A2/ q2j] = 7rC ~/=C__ -.'£ k2 k21= /'T - ~ [(-t) i- I]. (29) 
q 

(The region k 2 "~ 1 does not give any singular contribution. So we cut o f f  the ila- 
tegral at large k 2 at k 2 = A 2. As]  -~ 0, A2! ~ 1). The expression (29) does agree 
with (13) (~! = 1/rr] 2 [ ( - t ) l  - 1 ]) if the numerical value of  C is C = 1/~r 2. 

We are interested in the function ~i  in two quite different regions of  q2 = - t  and 
]. In the first region ] ~ (In 1/q 2) - 1 >~ q2(q2 _> 0). It  is easy to see that here the ex- 
pression] - a(k  2) - a ( (k  - q)2) + 1 can be safely replaced by/ ' ,  and we again arrive 
at (29). Thus the reggeization of  leptons in the intermediate state do not  influence 
on the form of  the partial wave in the region where the condensation of the poles, 
considered above, is placed. 

On the other hand at / '  ~ t there are some new singularities of  X-I namely moving 
branch points, which contribution to the asymptotics should be added to the contri- 
bution of  the poles to A-(s , t ) (eq.  (17)). A t ]  ~ q 2  the factor p2 [ ] . . .  ] can be neglected 
and we have 

1 d 2 k k-  ( q - k )  

~/(q2)  = n-2 f ]  _ Or(k2) _ ot(q - k )  2) + 1 k2(q  - k )  2 
(30) 
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Putting ot(k 2) = 1/2 + ot'k 2 we obtain by straightforward calculation 

= 1 In (2//ct'q2) + 1 
,~/(q2) ~-- ((J/cl'q 2) + 1) 2 

(31) 

The singularity j = -~  c~'q 2 is the usual Mandelstam branch point enhanced by the 
factor 1//at small /due to the masslessness of  the particles involved. The branch 
po in t /=  -otq 2 is characteristic for the massless case. Since at small / (and q2. ~ j ) ~ /  

~,/the partial wave &/is determined in this region uniquely: 

~ (32) J - (2j/et'q 2) + 1 
In 

((j/(x'q 2) + I) 2. 

Substituting (32) into (24) it is easy to get the contribution of the cuts to the 
asymptotics of  A-(s ,  t) which should be added to (17). For ct'q2~ ~, 1: 

~A-(s, t) = -l~rct'q2 e -½a'q2~ [ i -  -~not'q 2] 1 
ln2 (~t'q2~) + Ir2 (33) 

The region of the essential variation of expression (17) is r ~ ~ or r 3 "~ ~. In this 
region q2~ ,~ 1 so that the contribution of the cut can be written in the simplest 
form: 

if2 . 
~A-(s,_t)= 2 - ~ r 2 [ t ~ ) ] .  (34) 

It  is interesting that this value does not depend on any unknown parameters (ex- 
cept of  the units in which s and t are measured, entering the logarithm in (34)). 

I f  we return to the physical amplitudes F, G, and H (eq. (10)) we see that the con- 
tribution (34) should be added to the amplitude of the process e + + e -  --> #+ +/a-  
(since it contains both functions (+ A - )  and (+ B - ) )  whereas in the amplitude of 
the transition v e + e + --> uz +/a + this contribution is cancelled out. 

4. Elastic lepton scattering 

As it was already mentioned the essential difference between the process 
e -  + e + -+ ta- + ta + and the elastic scattering consists in the fact that in the latter 
case the t-channel has vacuum quantum numbers. This leads to some complications 
which are absent for the reaction e -  + e + --* ta- + ~t +. 

(i) In the case of elastic scattering of charged leptons (electrons, muons) the 
photon exchange in t-channel is possible and because of this the electromagnetic in- 
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teraction gives here much more essential contribution than in the case of  e -  + e + -+ 
# -  +/~+, where only the s-channel photon is present. The above considered conden- 
sation of the poles as well as the cut contribution gives in order of  magnitude for the 
cross-section of the process e -  + e + ->/a- + g+ at small angles do/dI2 ~ 1/s. The 
electromagnetic cross-section at zero angle is equal here to a2/2s,  c~ = 1/137, i.e. 
four orders less than the "weak" cross-section. In the case of elastic scattering the 
electromagnetic cross section is (ot2/t2)s so that the ratio (do/dI2)el/(dcr/dI2)weak ~ 
(as/t)  2 ~ a2/04.  Thus at small angles 0 < Vr~ ~ 0.1 the electromagnetic interaction 
is more essential than the weak one. 

(ii) In the case of elastic scattering a single hadron pair can appear in t-channel. 
The situation is probably as follows. When hadron-antihadron contribution to t- 
channel unitarity condition is continued to the physical region of s-channel there 
enters the amplitude of the process £ + h ~ ~ + h(£ is lepton, h is hadron) at very 
high energy and relatively small momentum transfer t. Though we are interested in 
those values of  t which are small in comparison with G -  1 (Gt  < 1), thery are still 
very large in the scale of hadron masses. If  the £ + h --> ~ + h amplitude rapidly de- 
creases as a function of momentum transfer (which looks to be an ordinary situation 
for hadron processes) than the contribution of hadron pair will be very small. If, 
however, there exist some hadrons (partons?) for which this decrease is not so strong, 
these hadron pairs should be taken into account in t-channel unitarity condition to- 
gether with lepton pairs. As a result one will have a system of coupled equations of 
the type of (8)  and, after diagonalization, the elastic amplitude will be represented 
as a sum of terms of the same kind similarly to formulae (10) for inelastic amplitudes. 

(iii) We shall prove now that expression (17) (or the sum of several terms of that 
type) cannot be completely correct for elastic amplitude. The reason is that the 
imaginary parts of the s-channel partial waves as calculated by (17) turn out to be 
altering in signs. In order to preserve s-channel unitarity there must exist at any 
rate one additional singularity (for instance, a Regge pole) placed at t = 0 to the 
right of  the point ] = 0. We shall show that such a singularity guarantees the validity 
of  the unitarity condition provided the contribution of this singularity itself to the 
imaginary parts of the partial waves is positive. Thus the asymptotic behaviour of 
the elastic amplitude must be determined by some singularity located to the right 
of the po in t /=  0. The specific character of the situation is that due to the mass- 
lessness of the particles in t-channel the trajectory of this singularity is itself sin- 
gular at the point t = 0 (eq. (14)). 

As it will be seen below, inspite of  the existence of massless particles, the inter- 
cept of the discussed singularity cannot be greater than unity, a(0) < 1. The argu- 
mentation is much the same as that was given in [4]. Finally we obtain that the 
asymptotic behaviour of the total lepton cross section is restricted by limits: 

const • 1Is < Oto t < const • s e (35) 
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where e is an arbitrary small fixed number. 
To calculate the partial waves of the direct channelfp(s) (p is the impact param- 

eter) is is convenient before to obtain some simple form for the sums entering eq. 
(17) in the case 4rr2~/~/r 3 ,~ 1. It is clear that on this condition many terms are es- 
sential in each sum in eq. (17). Let us consider for example the imaginary part 
A l(S, t). If not only 41r2~,~/r 3 ~ 1 but also ~/r ~ I than the sums over n can be re- 
placed by the integral and we easily get: 

A 1 = n~(~) 3/2 [1 - -~r~]e-r f f4~ '  , li/r "~ 1. (36) 

Thus at very small momentum transfer when r = ln(-1/ t )  >> ~ = Ins the amplitude 
A 1 is exponentially small. 

Let it be now that Ur >~ 1 but still 47r2"),~/r 3 '~ 1. Then A 1 is not equal to zero 
only in neighbourhood of the integer values of ~/r = m = 1, 2, 3 . . . .  If in the 
neighbourhood of ~/r = m we write A 1 in the form: 

A,=~ ~ n 2 e x p k 4 ~ r ~ / ~ n 2 + 2 1 r i ( ~ - m ) ]  (37) 
n=-.o [- r 3 

then it is easy to show that provided ~[r - m "~ 1 and 41r2"),~r 3 .~ 1 we can again re- 
place the summation by integration. The integral is easily calculated and the final 
expression for A 1 appears to be the sum of nonoverlaping peaks near the values of 
~/r ~ m: 

r 3 r 3 AI= ~ (~_.~)3,2 [ 1 - ~ - ~  ( ~ - m ) 2 1  exp [ -~ -~  ( ~ - m ) 2 ]  . (38) 
m= 1, 2,_. 

At smaller r (larger Itl), when 7~/r 3 ~ 1 the peaks begin to overlap and at 47r27~/r 3 
~, 1 A 1 has the form 

41r 4 t 41r2~'~ 2zr~ 
A 1 -  r~ -exp  \ r3 ] cos r ' (39) 

and is small. 
The expression (38) with the same accuracy can be rewritten as the distribution 

in r  

AI = ~ /u  ~3/2[1 m (r 
m=1,2 .. . .  ~4~m] - ~ - ~  ---~rn)2 ] exp [-4-~ (r - - ~ )  2 ] (40) 
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,A1(s,t) 

~¢, sltl--1 
p 

",,( 
\ ~=¢/2, sltl2=l \ 

" -~ ("2' ~o~ 

U ~  q2=-t 

Fig. 3. The sketch of the function A 1 (s, t) versus t. The diagram is not the real plot but merely 
tlle.ilhJstration. 

Because of the intricate character of t-dependence ofA 1 this function is drawn 
quite schematically in fig. 3. Note that the height of the first peaks is of order of 
unity and, being so, is larger than the contribution (34) of the Regge cut, tiiscussed 
in the previous section. 

Starting from eq. (38) we can get the imaginary parts of s-channel partial waves. 
Since 

I . t  

1 f dqZJ  0 ( q o ) A 1  (s, q2)  (41) Im fp (s) = s  
0 

we represent Imfp as a sum: 

I m f  ° = ~ Imf(o=) (s), 
re=l,2, .. 

(:,-D= = I - -  <,o-""+> 
S 1+Iim _ ~  

(42) 
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We see from (42) that Imffpm)(s) = s-  1 - l[m Fro(pro) where 19m = P e-~/2m = 
19/s 1/2m. Estimating the integral by the steepest descent method it is not difficult to 
show that at Pm ~ 1 I m 3 ~  ) decreases with 19m faster than any power of 1lore: 

I F ( P m ) l ~ e x p  ( - 7 1 0 2 1 9 m )  (43) 

1 1 1 
Thus there exist some succession of decreasing impact parameters 19"-s~, sa, sg, etc., 

corresponding to p ~ 1 so that at each/9 from the succession the new contributions 
• 2 )  to Irnfp arise (Imj~p~)hil/(2 , and so on). At the edge of each such a disc, where 

+ /> t 19 ,,, s l / 2m,  imam),,, 1/s 1 l lm and oscillate, while I m ~  m') with m > m (am' < On) 
are small and Imf(~ n') with m' < rn (p_, > #m ) does not depend on p and give the 
positive contribution of order of ~ s - - ' f -  1/m , i.e. again small as compared with 
Imf(p m). In order to show that any singularity placed to the right of the point. ] = 0 
provides the positiveness of the imaginary parts of partial waves we must now .£only 
demonstrate that the contribution of this singularity in Imfp (denote it as Im~p) at 
19 "" s 1/2m is larger than s -  1 - 1/m. 

As it has been stated in the second section, the trajectory with the intercept 
or(0) = s 0 has at t = 0 singularity (14). Therefore we have for Imj~p in order of mag- 
nitude: 

Imffp "-sao -1  f dq 2 Jo (q19)exp r-b q2a°~ ] 0 < s 0 < 1 .  (44) 
0 L slnffo~0..I , 

For ~/p2ao < 1 we can expand the exponential factor and get: 

(45) 

In (45) the logarithmic dependence is neglected. As it is seen from its derivation 
the equation (45) is valid not for too large values of p, but only for 192 < s. At 
p2 ,~ s the contributions of all the singularities, lying to the left of the point cx o are 
of the same order. Note, that (45) is also correct for a 0 = 1. 

At p ~ s l12m, m = 2, 3 . . . . .  

I m ~  "-- s -  1-  l/ra s(1 - l/m)cx o . 

Thus, if o~ 0 > 0, Imf~ >> Im j~n) ~ s -  1 - l/m and the total imaginary part is positive 
indeed. For m = 1, p~ "" s, as it has been already explained, the contribution of all 
the singularities are of the same order and so the positiveness of the imaginary part 
can easily be achieved. 

We see immediately from (45) that, on the other hand, cx 0 <~ 1. Indeed, it follows 
from (45) that Imfp(s) > 1 when p2 < s~o- l/ao+l" Therefore, if s 0 > 1, Im~p(s) 
turns out to be larger than unity (and, hence, antiunitary) inside the range p where 
the estimation (45) is correct, i.e. ~1/~o < p2 < s. Thus we obtain the inequalities (35) 
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To the conclusion of  this section we consider briefly lepton-antilepton backward 
scattering, for example e ÷ + e -  -* e -  + e ÷. The asymptotic behavior is determined 
here by the singularities o f  u-channel partial waves. Since u-channel contains two 
particles (not particle ÷ antiparticle as before) the helicity here is equal to zero and 
the partial waves can be represented by the formula: 

2 f  . . f ;  (u) = --~ dz Q~ (z)A t (s, u), z = 1 + 2Su (46) 
0 

The partial waves o f  negative signatures are absent because o f  the s ~ t symmetry 
in the reaction e + + e -  -~ e -  + e +. At small values o f u  the absorptive par tA 1 as well 
as the amplitude itself are proportional to u because of  the conservation of  helicity 
in backward scattering. This means that at u ~ 0: 

.f~(u) "~ u/+ 1 (47) 

which lead to the conclusion that the above considered condensation of  the poles 
removes in u-channel to the poin t ]  = - 1 .  So, if there are no singularities with, inter- 
cept larger than - 1 ,  the amplitude is of  order of"~s - 1. 

5. Conclusions 

Let us discuss now the experimental possibilities (however poor they are) of  the 
verification o f  the theory. It  is necessary first of  all to estimate the minimal energies 
which could be considered as sufficient for observation of  the phenomena described. 
As it was already mentioned weak interactions become strong when the partial waves 
saturate the unitary limit. For the process £ + ~ v + g the P-wave as calculated in 
the first order of  perturbation theory reaches its unitary limit at s = s o where s o is 
defined by 

Gs 0 
I'fl(So)l - 61rx/~ - 1, s o ~ 2 . 5 . 1 0 6  GeV 2 . (48) 

We see that f l (S0)  differs from Gs by a numerical factor of  order of  "~ 1/25, which 
has to be taken into account [2]. Respectively, for the units o f s  and t it is reasonable 

1 1 to choose the value s o = 25 G -  and not G -  as it was supposed throughout the 
purely theoretical part of  the paper. 

Assume that the appropriate energy is of  order of  s "~ 10s0, i.e. 

s "~ 2 5 . 1 0 6  GeV 2 (49) 

This corresponds to two colliding beams, each one with the energyE= 1/2V~ "= 
2500 GeV. We will refrain from commenting on the obvious difficulties of  designing 
such an accelerator. 

On the other hand, as far as the value o f  the cross-section of, say, the process 
e -  + e + ~ # -  +/~+ is concerned it does not look hopelessly small. For example, for 
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s = 10s0, ~ = In sis O = 2.3 and ( - 0  = 0.1s0, r = l n ( so / - t )  = 2.3 (this corresponds to 
the scattering angle 0 ~ ~ S ~ - ~  0.1 and to - t  ~ 2.5 • 104 GeV 2) the contribution of  
the Regge cut i n A -  gives 18A-I 2 ~ 0.02 (eqs. (33) - (34) ) .  In our normalization the 
cross-section is then 

do 4 
d--~ ~ I~A-12 ~ 1 pb/sr .  (50) 

As to the contribution of  the poles condensation, it depends clltlcally on the val- 
ue of  parameter ~'. I f  ~, ~ 1 this contribution is very small. For example at 3' = 1, 
~ = r -- 2.3, 4~2~,~/r 3 -- 7.5 ~, 1 so that asymptotics (39) is correct. We ge tA 1 ~ 0.02 
(IA 112 "" 4 • 10 -4)  which is smaller than the cut contribution. If  ~ is small, however, 
the situation is quite different. For instance, let 'y be 0.05. Then 47r2~/r  3 = 0.37 i.e. 
is smaller than unity. Estkrnating .41 by eq. (40) (m = 1), we see that.41 ~ 60. The 
magnitude of  cross-section in the peak r = ~ five orders larger than the contribution 
of  the cut "-" 100 nb). 

It seems to us that two qualitative statements are of  special interest. (i) The 
asymptotics of  the cross-section do/dS2 ( e - e  + -~ /a -g  +) cannot be smaller than ~ 1Is 
(we remind that there can exist singularities located to the right of  the point ] = 0 
and then the magnitude of  the cross-section will be larger). (ii) I t  is possible (if 3, is 
small) that there exist some rapid variations of  the cross section in the region of  
very small t, say, s -112 >f Itl > / s -  1 ( ~  < r ~< ~) whereas the usual range is ( - t )  ~ 
(Ins) -1  or ( - t )  ~ 1 (in absence ofmassless particles). 

I t  has been shown above that for elastic scattering some singularity must exist 
to the right of  the p o i n t / =  0 but to the left o f / =  1. In such a situation it seems 
not unreasonable to suggest the existance of  the Pomeranchuk singularity with 
intercept a(0)  = 1. One should then expect the constant total cross-section of  order 
of: 

Otot ,~ 41rs 0 1 ~, G ~ 5 nb. (5 I) 

We are grateful to A.D. Dolgov, I.T. Dyatlov, L.B. Okun and V.I. Zakharov for 

numerous useful discussions. 
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